485 research outputs found

    A Monitoring System for the BaBar INFN Computing Cluster

    Full text link
    Monitoring large clusters is a challenging problem. It is necessary to observe a large quantity of devices with a reasonably short delay between consecutive observations. The set of monitored devices may include PCs, network switches, tape libraries and other equipments. The monitoring activity should not impact the performances of the system. In this paper we present PerfMC, a monitoring system for large clusters. PerfMC is driven by an XML configuration file, and uses the Simple Network Management Protocol (SNMP) for data collection. SNMP is a standard protocol implemented by many networked equipments, so the tool can be used to monitor a wide range of devices. System administrators can display informations on the status of each device by connecting to a WEB server embedded in PerfMC. The WEB server can produce graphs showing the value of different monitored quantities as a function of time; it can also produce arbitrary XML pages by applying XSL Transformations to an internal XML representation of the cluster's status. XSL Transformations may be used to produce HTML pages which can be displayed by ordinary WEB browsers. PerfMC aims at being relatively easy to configure and operate, and highly efficient. It is currently being used to monitor the Italian Reprocessing farm for the BaBar experiment, which is made of about 200 dual-CPU Linux machines.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 10 pages, LaTeX, 4 eps figures. PSN MOET00

    Visual and somatosensory information contribute to distortions of the body model

    No full text
    Distorted representations of the body are observed in healthy individuals as well as in neurological and psychiatric disorders. Distortions of the body model have been attributed to the somatotopic cerebral representation. Recently, it has been demonstrated that visual biases also contribute to those distortions. To better understand the sources of such distortions, we compared the metric representations across five body parts affording different degrees of tactile sensitivity and visual accessibility. We evaluated their perceived dimensions using a Line Length Judgment task. We found that most body parts were underestimated in their dimensions. The estimation error relative to their length was predicted by their tactile acuity, supporting the influence of the cortical somatotopy on the body model. However, tactile acuity did not explain the distortions observed for the width. Visual accessibility in turn does appear to mediate body distortions, as we observed that the dimensions of the dorsal portion of the neck were the only ones accurately perceived. Coherent with the multisensory nature of body representations, we argue that the perceived dimensions of body parts are estimated by integrating visual and somatosensory information, each weighted differently, based on their availability for a given body part and a given spatial dimension

    A sub-150-nanometre-thick and ultraconformable solution-processed all-organic transistor

    Get PDF
    Recent advancements in the field of electronics have paved the way to the development of new applications, such as tattoo electronics, where the employment of ultraconformable devices is required, typically achievable with a significant reduction in their total thickness. Organic materials can be considered enablers, owing to the possibility of depositing films with thicknesses at the nanometric scale, even from solution. However, available processes do not allow obtaining devices with thicknesses below hundreds of nanometres, thus setting a limit. Here, we show an all-organic field effect transistor that is less than 150 nm thick and that is fabricated through a fully solution-based approach. Such unprecedented thickness permits the device to conformally adhere onto nonplanar surfaces, such as human skin, and to be bent to a radius lower than 1 μm, thereby overcoming another limitation for field-effect transistors and representing a fundamental advancement in the field of ultrathin and tattoo electronics

    Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion

    Get PDF
    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−

    Le varietà di sorgo da granella consigliate per le semine 2017

    Get PDF
    Nel 33º anno di prove di confronto tra ibridi di sorgo da granella sono stati realizzati 5 campi sperimentali, 2 nel Nord, 2 in Italia centrale e 1 in Sicilia. Le rese medie sono risultate simili a quelle del 2015, pur con notevoli differenze tra i diversi areali di coltivazion

    Establishing Multiple Chip-to-Chip Orthogonal Free-Space Optical Channels using Programmable Silicon Photonics Meshes

    Get PDF
    Two silicon photonics programmable meshes of Mach-Zehnder interferometers are used to automatically establish chip-to-chip orthogonal free-space communication links. Optimum channels with mutual isolation of more than 30dB are found even in case of a misaligned link or in presence of an obstacle in the path

    TRAIL, OPG, and TWEAK in kidney disease: biomarkers or therapeutic targets?

    Get PDF
    Ligands and receptors of the tumor necrosis factor (TNF) superfamily regulate immune responses and homeostatic functions with potential diagnostic and therapeutic implications. Kidney disease represents a global public health problem, whose prevalence is rising worldwide, due to the aging of the population and the increasing prevalence of diabetes, hypertension, obesity, and immune disorders. In addition, chronic kidney disease is an independent risk factor for the development of cardiovascular disease, which further increases kidney-related morbidity and mortality. Recently, it has been shown that some TNF superfamily members are actively implicated in renal pathophysiology. These members include TNF-related apoptosis-inducing ligand (TRAIL), its decoy receptor osteoprotegerin (OPG), and TNF-like weaker inducer of apoptosis (TWEAK). All of them have shown the ability to activate crucial pathways involved in kidney disease development and progression (e.g. canonical and non-canonical pathways of the transcription factor nuclear factor-kappa B), as well as the ability to regulate cell proliferation, differentiation, apoptosis, necrosis, inflammation, angiogenesis, and fibrosis with double-edged effects depending on the type and stage of kidney injury. Here we will review the actions of TRAIL, OPG, and TWEAK on diabetic and non-diabetic kidney disease, in order to provide insights into their full clinical potential as biomarkers and/or therapeutic options against kidney disease

    Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction - REVEAL: A randomized controlled trial

    Get PDF
    Context: Acute ST-segment elevation myocardial infarction (STEMI) is a leading cause of morbidity and mortality. In experimental models of MI, erythropoietin reduces infarct size and improves left ventricular (LV) function. Objective: To evaluate the safety and efficacy of a single intravenous bolus of epoetin alfa in patients with STEMI. Design, Setting, and Patients: A prospective, randomized, double-blind, placebo-controlled trial with a dose-escalation safety phase and a single dose (60 000 U of epoetin alfa) efficacy phase; the Reduction of Infarct Expansion and Ventricular Remodeling With Erythropoietin After Large Myocardial Infarction (REVEAL) trial was conducted at 28 US sites between October 2006 and February 2010, and included 222 patients with STEMI who underwent successful percutaneous coronary intervention (PCI) as a primary or rescue reperfusion strategy. Intervention: Participants were randomly assigned to treatment with intravenous epoetin alfa or matching saline placebo administered within 4 hours of reperfusion. Main Outcome Measure: Infarct size, expressed as percentage of LV mass, assessed by cardiac magnetic resonance (CMR) imaging performed 2 to 6 days after study medication administration (first CMR) and again 12±2 weeks later (second CMR). Results: In the efficacy cohort, the infarct size did not differ between groups on either the first CMR scan (n=136; 15.8% LV mass [95% confidence interval {CI}, 13.3-18.2% LV mass] for the epoetin alfa group vs 15.0% LV mass [95% CI, 12.6-17.3% LV mass] for the placebo group; P=.67) or on the second CMR scan (n=124; 10.6% LV mass [95% CI, 8.4-12.8% LV mass] vs 10.4% LV mass [95% CI, 8.5-12.3% LV mass], respectively; P=.89). In a prespecified analysis of patients aged 70 years or older (n=21), the mean infarct size within the first week (first CMR) was larger in the epoetin alfa group (19.9% LV mass; 95% CI, 14.0-25.7% LV mass) than in the placebo group (11.7% LV mass; 95% CI, 7.2-16.1% LV mass) (P=.03). In the safety cohort, of the 125 patients who received epoetin alfa, the composite outcome of death, MI, stroke, or stent thrombosis occurred in 5 (4.0%; 95% CI, 1.31%-9.09%) but in none of the 97 who received placebo (P=.04). Conclusions: In patients with STEMI who had successful reperfusion with primary or rescue PCI, a single intravenous bolus of epoetin alfa within 4 hours of PCI did not reduce infarct size and was associated with higher rates of adverse cardiovascular events. Subgroup analyses raised concerns about an increase in infarct size among older patients. Trial Registration: clinicaltrials.gov Identifier: NCT00378352. ©2011 American Medical Association. All rights reserved

    Self-Configuring Silicon-Photonic Receiver for Multimode Free Space Channels

    Get PDF
    A self-configuring mesh of silicon Mach-Zehnder Interferometers is employed to receive two spatially overlapped orthogonal beams modulated at 10 Gbit/s. These beams, sharing the same wavelength and state of polarization, are separated with more than 30 dB isolation, and sorted out with no signal degradation

    Separating arbitrary free-space beams with an integrated photonic processor

    Get PDF
    Free-space optics naturally offers multiple-channel communications and sensing exploitable in many applications. The different optical beams will, however, generally be overlapping at the receiver, and, especially with atmospheric turbulence or other scattering or aberrations, the arriving beam shapes may not even be known in advance. We show that such beams can be still separated in the optical domain, and simultaneously detected with negligible cross-talk, even if they share the same wavelength and polarization, and even with unknown arriving beam shapes. The kernel of the adaptive multibeam receiver presented in this work is a programmable integrated photonic processor that is coupled to free-space beams through a two-dimensional array of optical antennas. We demonstrate separation of beam pairs arriving from different directions, with overlapping spatial modes in the same direction, and even with mixing between the beams deliberately added in the path. With the circuit’s optical bandwidth of more than 40 nm, this approach offers an enabling technology for the evolution of FSO from single-beam to multibeam space-division multiplexed systems in a perturbed environment, which has been a game-changing transition in fiber-optic systems
    • …
    corecore